Ask Me Help Desk

Ask Me Help Desk (https://www.askmehelpdesk.com/forum.php)
-   Mathematics (https://www.askmehelpdesk.com/forumdisplay.php?f=199)
-   -   Demonstrable (https://www.askmehelpdesk.com/showthread.php?t=772745)

  • Oct 25, 2013, 11:11 PM
    I_am_Legend
    Demonstrable
    demonstrate to m cosec^4(x) -cotan^4(x)=cosec^2(x) +co tan^2(x)
  • Oct 26, 2013, 04:56 AM
    Celine91
    first step is to determine which side to simplify, first obvious thing to do is to relate to this: (a^4 - b^4) = (a^2 - b^2) * (a^2 + b^2),
    so we have to simplify the left side.

    cosec^4(x) -cotan^4(x) = (cosec^2(x) -cotan^2(x)) * (cosec^2(x) +cotan^2(x))
    now back to the equality required to prove, we have to work with (cosec^2(x) -cotan^2(x)) and show its equal to 1!

    (cosec^2(x) -cotan^2(x)) = (1/sin^2(x)) - (cos^2(x)/sin^2(x))
    = (1 - cos^2(x))/sin^2(x)
    = sin^2(x)/sin^2(x)
    = 1

    thus, cosec^4(x) -cotan^4(x) = (cosec^2(x) -cotan^2(x)) * (cosec^2(x) +cotan^2(x)) = 1 * (cosec^2(x) +cotan^2(x))

    and cosec^4(x) -cotan^4(x)=cosec^2(x) +co tan^2(x). (proved)

  • All times are GMT -7. The time now is 04:34 AM.