Ask Me Help Desk

Ask Me Help Desk (https://www.askmehelpdesk.com/forum.php)
-   Mathematics (https://www.askmehelpdesk.com/forumdisplay.php?f=199)
-   -   Differentiate: y=(x)^((x^x)) using dy/dx (https://www.askmehelpdesk.com/showthread.php?t=747325)

  • May 4, 2013, 08:03 AM
    Dodo333
    Differentiate: y=(x)^((x^x)) using dy/dx
    Please show the steps and the final answer. Thank you!
  • Apr 11, 2015, 01:04 AM
    CWH68
    ln(x^x) = x ln x, so x^x = e^(x ln x). Now, ln (x^(x^x)) = (x^x) ln x
    = (ln x)(e^(x ln x)). Thus, x^(x^x) = e^((ln x)(e^(x ln x))).
    Thus, dy/dx = e^((ln x)(e^(x ln x)))*d/dx((ln x)(e^(x ln x)))
    =(x^(x^x))*d/dx((ln x)(e^(x ln x))) = (x^(x^x))*((e^(x ln x))/x +
    (ln x)*(d/dx(e^x ln x))) = (x^(x^x))*((e^(x ln x))/x +
    (ln x)(e^(x ln x))(1 + ln x)) = (x^(x^x))*((x^x)/x +
    (x^x)(ln x)(1+ln x)) = (x^(x^x))(x^x)((1/x) + ln x + (ln x)^2).
    Hope this helps.

  • All times are GMT -7. The time now is 01:12 AM.