\lim_{x \to 0} \frac {\cos 5x - \cos x}{\sin 4x} = \lim_{x \to 0} \frac{-2 \sin 3x \sin 2x}{\sin 4x} = \lim_{x \to 0} = \frac {-2 \frac {\sin 3x}{3x} \times 3x \times \frac {\sin 2x}{2x} \times 2x }{ \frac{\sin 4x}{4x} \times 4x }
Why doesn't it reach any answer or what is wrong ?