Ask Me Help Desk

Ask Me Help Desk (https://www.askmehelpdesk.com/forum.php)
-   High School (https://www.askmehelpdesk.com/forumdisplay.php?f=400)
-   -   Logarthmic Equation (https://www.askmehelpdesk.com/showthread.php?t=513861)

  • Oct 5, 2010, 03:14 PM
    LynnM
    Logarthmic Equation
    Can someone just get me started on this question:

    2(logx)^2 -3 -5logx = 0 (Solve for x.)

    Not too sure how to begin this one. Thank you.
  • Oct 6, 2010, 01:51 AM
    Unknown008

    You make use of a substitution to make it easier.

    Let



    Rearrange:



    Solve this. After that, replace back y by log x.

    Post what you get! :)
  • Oct 6, 2010, 07:50 AM
    LynnM
    Okay, here it is:

    2y^2 - 5y - 3 = 0
    (2y + 1) (y - 3) = 0

    y = -1/2, 3

    Here is where it gets tricky for me. Since a base can never be negative I'm not sure what to do about the -1/2. Would it still be a plausible solution since the entire logx may be a negative or is considered to be the base? This is the next step I took. Not too sure about it though.

    2(-1/2)^2 - 3 - 5(-1/2) = 0
    1/2 - 3 + 2.5 = 0
    0 = 0
    and
    2(3)^2 - 3 - 5(3) = 0
    18 - 3 - 15 = 0
    0 = 0

    Am I at least somewhat correct? (crossing my fingers!)
  • Oct 6, 2010, 07:57 AM
    Unknown008

    Yes, but now, you must replace back y by log x, like this:



    So,



    And:



    So,



    Solve for x now :)
  • Oct 6, 2010, 08:15 AM
    LynnM
    Like this:

    logx = -1/2
    10^{-1/2} = x
    x = 0.3162
    and
    logx = 3
    10^3 = x
    x = 1000

    Then, plugged back into the equation:

    2(log0.3162)^2 - 3 - 5log0.3162 = 0
    0.5 - 3 + 2.5 = 0
    0 = 0
    and
    2(log1000)^2 - 3 - 5log1000 = 0
    18 - 3 - 15 = 0
    0 = 0

    So, because the 2 and the power 2 are placed outside the brackets surrounding the logx, they are applied after solving for log0.3162 and log1000, correct? And the because the 5 is not outside of any brackets it should be raised as a power then log1000^5 should be solved, correct?
  • Oct 6, 2010, 08:21 AM
    Unknown008

    Right! :)

    Well done!
  • Oct 6, 2010, 08:24 AM
    LynnM
    Yesss! -raises arms in triumphant relief-! Thanks a billion!
  • Oct 13, 2010, 12:26 AM
    sandford11

    Good solutions there I like them.

  • All times are GMT -7. The time now is 09:15 PM.