Ask Experts Questions for FREE Help !

    Harmonic analysis

    Asked Jan 19, 2012, 11:42 AM — 1 Answer

    Harmonic analysis
    The figure shows a two-component complex-tones deviation (x) dependence of time (t).
    Intervals on the deviation axis are 1 cm and on the time axis 2 microseconds.
    1) What's the maintone frequency? 25kHz. That's simple...
    2) Maintone amplitude (should be 7,5cm) how to I find it?
    3) Overtone/uppertone frequency? 100 kHz
    4) overtone/uppertone amplitude? 2cm.
    Any hints how to find 2, 3 and 4?

    Attached Images Attached Images  
    Search this Question
    Share |
    1 Answer
    ebaines's Avatar
    ebaines Posts: 12,088, Reputation: 1303

    Jan 20, 2012, 08:10 AM
    You need to be a bit of a sleuth to figure this out. First - you are correct that the main frequency is 40 micro-sec. It's also apparent that the harmonic's frequency is a multiple of that - you can see this because the sum of the two is 0 at 20 micro-sec and 40 micro-sec. If we call the main frequency f1, then the harmonic is f2 = nf1. So let's see what works:

    If n = 1, then you would have two sine waves superimposed on each other, resulting in a nice sine wave that is the sum of the two. But that's not what the curve looks like.

    If n=2 then at 10 micro-sec you the harmonic wouild be going negative whil te main is ata max, so the slope woukld be negrive. But we see that the sum continues to increase after 10 micro-sec, so n does not equal 2.

    If n=3 then at 20 micro-sec both the main and harmonic are crossing from positive to negative, so the slope of the line at t=20 would be negative. But it looks to be essentailly flat at that point. So n does not equal 3.

    If n = 4 then there are several things that work out nicely: at t= 10 microsec when the main is at a max the harmonic is going positive, so the sum would continue to increase, which si what we see. At t=20 both main and harmonic are zero, and the slope of the two are going in opposite directions - hence the slope of the sum is near 0, which matches the diagram.

    So if we assume that n=4 we can find the amplitude of the main by looking at t= 10, because at that pount the harmonic is 0. We can see from the diagram that the amplitude there is 7.5.

    Now to find the amplitude of the harmonic - note that the sum reaches a max of 9 at 12 micro-sec. Hence:

    If you solve for A2 you'll find that it's very close to 2.
    Helpful (1)

Not your question? Ask your question View similar questions


Question Tools Search this Question
Search this Question:

Advanced Search

Add your answer here.

Check out some similar questions!

Harmonic oscilator [ 3 Answers ]

An harmonic oscilator is made by hanging a mass of 23g to the end of a spring and separating the mass 7.5cm from it´s balance position. Before, we mesured the length without moving and without the mass which was 23,3cm and then with the mass on was 28.8cm. Find the angular velocity (pulse)

Harmonic motion [ 2 Answers ]

A vertical sprng with spring stiffness constant 305N/m vibrates with an amplitude of 28.0cm when 0.260kg hangs from it. The mass passes through the equilibrium point(y=0) with positive velocity at t=0 a) What equation describes this motion as a function of time? b) At what times will the spring...

Harmonic balancer [ 3 Answers ]

How do I change the harmonic balancer in a 1993 buick 3.8

Harmonic motion [ 1 Answers ]

A 0.60 kg mas vibrates according to the equation x= 0.45cos6.40r, where x is in meters and t is in seonds. Determinr a) the amplitude b) the frequency c) the total energy and d) the kinetic energy and potential energies when x=0.30m.

Harmonic motion [ 1 Answers ]

At what dissplacement from equilibrium is the speed of a SHO half the maximum value?

View more questions Search