emmacorless
Jan 31, 2011, 08:56 PM
find the derivative of cos(sin(x^2-3x))
Unknown008
Jan 31, 2011, 10:27 PM
When you have
y = cos(f(x))
The derivative is:
y' = f'(x). -sin(f(x))
Apply the same thing here, twice.
y = \cos(\sin(x^2-3x))
y' = \frac{d(\sin(x^2 - 3x)}{dx} -\sin(\sin(x^2-3x))
y' = (2x-3)\cos(x^2 - 3x).-\sin(\sin(x^2-3x))
Then you simplify if necessary.
y' = -(2x-3)\cos(x^2 - 3x)\sin(\sin(x^2-3x))