Ask Experts Questions for FREE Help !
Ask
    Roddilla's Avatar
    Roddilla Posts: 145, Reputation: 3
    Junior Member
     
    #1

    Sep 17, 2011, 12:09 AM
    Chemistry Question about Acids and Bases
    *URL Removed*

    It is about acids and bases and half tit rations. It is a calculation found in an A level Chemistry Past Paper from Malta.
    CliffARobinson's Avatar
    CliffARobinson Posts: 1,416, Reputation: 101
    Ultra Member
     
    #2

    Sep 17, 2011, 12:18 AM
    We love to help people with homework, we just ask that it be presented in a give and take format.

    We need you to present the problem, and tell us what you have already figured out and what you need help with. We are more like tutors or reference librarians rather than someone who finishes your homework for you.

    Please write out the problem and then tell us what you have done with it so far.


    Thank you.
    Cliff Robinson
    Community Director
    Roddilla's Avatar
    Roddilla Posts: 145, Reputation: 3
    Junior Member
     
    #3

    Sep 17, 2011, 07:15 AM
    I worked it out all of it by I just don't agree with the given answer.
    Unknown008's Avatar
    Unknown008 Posts: 8,076, Reputation: 723
    Uber Member
     
    #4

    Sep 17, 2011, 08:49 AM
    Was the url that you originally put related to your question? :confused:

    If not, be aware that advertising is not tolerated on forums.

    Otherwise, what you need to know concerning acid-base titrations are the balanced equations for the reactions taking place. Then use proportions to get the required number of moles of each reactant.
    CliffARobinson's Avatar
    CliffARobinson Posts: 1,416, Reputation: 101
    Ultra Member
     
    #5

    Sep 17, 2011, 02:54 PM
    Post your work here, and we will help you!
    Roddilla's Avatar
    Roddilla Posts: 145, Reputation: 3
    Junior Member
     
    #6

    Sep 18, 2011, 01:00 AM
    Yes
    On the website there is a question which you can download.
    Unknown008's Avatar
    Unknown008 Posts: 8,076, Reputation: 723
    Uber Member
     
    #7

    Sep 18, 2011, 03:59 AM
    Still, I have absolutely no idea where you are stuck. I know such experiments, I have done them quite a double dozen of times and I know that there are traps. But without knowing where you are stuck, how am I going to be sure that the help I'm offering you will be the best possible help I can provide?
    Roddilla's Avatar
    Roddilla Posts: 145, Reputation: 3
    Junior Member
     
    #8

    Sep 18, 2011, 06:50 AM
    In the file there is a red asterix which shows where I don't agree with the answer.

    And thanks all for trying to help.
    Unknown008's Avatar
    Unknown008 Posts: 8,076, Reputation: 723
    Uber Member
     
    #9

    Sep 18, 2011, 07:46 AM
    Yes, but there is a problem... the link is not there... :rolleyes:

    And I don't know who removed it...
    Roddilla's Avatar
    Roddilla Posts: 145, Reputation: 3
    Junior Member
     
    #10

    Sep 18, 2011, 09:07 AM
    The link is www.roderickabdilla.wordpress.com
    Unknown008's Avatar
    Unknown008 Posts: 8,076, Reputation: 723
    Uber Member
     
    #11

    Sep 18, 2011, 10:50 AM
    Okay, next time, try typing the question instead of posting a link to the download of a document, okay?

    The pH of a solution obtained by addition of 8.2 cm^3 of sodium hydroxide to 25.0 cm^3 of the acid is 4.2. Calculate the concentration of hydroxonium ions in this solution and hence find the dissociation constant of the acid. (5 marks)

    Moles of acid in 25cm^3 = 5.08 x 10^-4
    Concentration of Sodium Hydroxide = 0.0310

    Below is the answer given by my tutor:
    From the previous calculation, the number of moles of monoprotic, weak acid in 25.0cm^3 of solution is 5.08x10^-4 moles. The number of moles of sodium hydroxide in 8.2 cm^3 of sodium hydroxide can be calculated too.

    Moles NaOH = volume x concentration
    = (8.2/1000) x 0.0310
    = 2.54 x x10^-4 moles

    Since each mole of sodium hydroxide reacts with one mole of the monoprotic acid, then 2.54 x 10^-4 moles of the base react with 2.54 x 10^-4 moles of the acid. This forms 2.54 x 10^-4 moles of salt Na^+A^-. The number of moles of acid left is the difference between the original number of acid and the moles which reacted with the base.

    The 2.54 x 10^-4 moles of salt NaA are completely dissociated in aqueous solution forming the same number of moles of A^-, while the weak acid HA dissociated. Since the number of moles of HA and A^- is the same, the concentration of these two species is equal too.

    The [H^+] can be found from the pH.

    pH = - log [H^+]
    [H^+] = 10^(-pH)
    [H^+] = 10^(-4.2)
    [H^+] = 6.31 x 10^-5 mol dm^-3

    The equation for the dissociation constant for the acid, Ka, is:


    *
    Since the number of moles of HA and A^- is the same, the concentrations of these two species cancel out of the equation.

    Ka = [H^+]

    Substituting the [H^+], then:

    Ka = 6.31 x 10^-5 mol dm^-3

    *That's where I don't agree. I think that the concentration of A^- should not be taken the same as that of HA because there are 2.54 x 10^-4 moles of A^- coming from the salt but also 6.31 x 10^-5 from the unreacted acid.

    Am I Correct in my thinking of what?
    Well, if you had written the equations, you wouldn't have had any doubt.

    The acid is monoprotic, as the base is monobasic. The mole ratio is therefore 1:1. Since there is twice the amount of acid, there is 2.54 x 10^-4 moles of acid in excess.

    So, the equations for the reactions occuring:


    Now, to the equilibrium equations:




    There is initially 2.54 x 10^-4 moles of HA, and there is a common ion effect for the A^- ion. The equilibrium constant equation thus become:





    x here is the amount of acid which has dissociated. It's the number of moles (2.54x10^-4) added to x to get the total number of moles of A^- and it is the total number of moles of HA (2.54x10^-4) minus the amount of moles x of HA that dissociated.

    Since HA is a weak acid, it is understood that x is very very small and for ease of students, we take [A^-] = [HA]

    Also, unless you know Ka, you would not be able to find x here, remember that the equation deals with concentration, which is the number of moles, divided by the volume times the total volume :)

    For instance, with a Ka of 6.31x10^-6 mol dm^-3, you will have something of the other of 3.7x10-5 mol from the 2.54x10^-4 mol of HA, which is ten times less than the original content. That margin of error is okay in A-level and does not require you to go into very precise mathematical skills only to get a value slightly different.

Not your question? Ask your question View similar questions

 

Question Tools Search this Question
Search this Question:

Advanced Search

Add your answer here.


Check out some similar questions!

Acids and bases [ 3 Answers ]

You and a friend are having dinner at a restaurant. You order strong, hot tea with lemon, and your friend orders plain hot tea. When your drinks arrive, the waiter apologetically informs you that he has already put the lemon into one of the teapots. He realized his mistake, and took it out, but now...


View more questions Search