PROBLEM 1

1. Derive the 2D Fourier transform of a 2D rect function, which is defined as below. Show your

work.

ANSWER
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0, otherwise

1D Fourier transform is defined as

and in 2D case it can be defined as

Fuv)=[ [ f(xy)e ™ dxdy
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We can write given function from Eq. (1) as

f(xy)=g(x)h(y)

It follows using Eq. (3)
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In region —ooto —X /2and X /2 to oo, function g (X) = 0and first and third integral will be zero.

Similarly for h('y). We have
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We have obtained 2D Fourier transform of rect function given in Eq. (1). It can be also written in terms

of sinc function which is defined as

sin(ax)
ax

sinc(ax) = (7)

We have
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PROBLEM 2

2. Consider a well-behaved continuous, integrable time signal f(t) that is band-limited, i.e.
F(w) = F{f(t)} = 0for |w| > B/2.
Consider that f,, = f(nAt) is an appropriately sampled version of f (t) at intervals At such
that the Nyquist sampling criterion 1s respected, i.e. At = 1/B.

a. Derive an expression for, and describe, the (continuous) Fourier transform of the sampled
function f,, i.e. the effect of sampling on the Fourier information.

b. Zero-padding is the action of “extending” the information in the Fourier domain, beyond
a certain frequency, by adding zeros. (Alternatively, you mught view this as replacing the

: . . : : : A :
information with zeros...) Derive an expression for the function g, = f (n ?t) that is

obtained by zero-padding the Fourier transform of f,, to an appropriately large frequency
|w| = co, and taking the inverse Fourier transform of that result.

¢. Discuss the ime-domain nterpretation of the zero-padding operation, and the
implications with respect to recovering the signal f(t) from f;,.

ANSWER
d.

Sampling the signal f (t) involves multiplying that signal with the impulse train (also knows as comb or

shah) function which is defined as

Sampled signal will be thus
£, = f(nAt)= f (t) 111, (¢)

S f(t)5(t—nat) (10)
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Because comb function is periodic, we can find its Fourier series representation
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ul, (1) = icne At :iie At (11)

Coefficients C, are found as
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where we used the fact that function 5(t - nAt) is zero in interval [—?,?} in case when n=0.
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Knowing that F {e At } = 5((0— A_tj , it follows that Fourier transform of comb function is
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Multiplication in time domain is equal to convolution in frequency domain. That means when taking
Fourier transform of sampled function we will have convolution of them. It follows

f,=F{f ()1, ()} = F{f(¢)}*F {1, ()}
i F{f(nAt)}*F{5(t—nAt)}
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where shifting property of delta function was used when finding convolution of two functions.
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The final expression Eq. (14) shows that Fourier transform of the sampled function is a periodic function
consisting of the repeated copies of the transform of the original continuous-time signal.

b.

We have that discrete Fourier transform (DFT) is
=" _in2%4
f,==> fe (15)

and inverse DFT
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In our case we have that 7 = ? . Now, if we add M zero points at the end of our signal, we get
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The sum doesn’t change because extra zeroes don’t contribute to it. Now, we have 7+ M spectral
samples with the same Nyquist frequency but with different line spacing. Taking the inverse DFT, we get
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The term — Ze * ™M/ can be solved analytically which leads to sinc function (aliased sinc function,
T n=0

https://en.wikipedia.org/wiki/Dirichlet kernel).

Zero padding means added extra zeros onto the end of f, before performing the DFT. Because the zero-

padded signal is longer the resulting DFT provides better frequency resolution. Zero-padding in the time-
domain results in interpolation in the frequency-domain.

PROBLEM 3


https://en.wikipedia.org/wiki/Dirichlet_kernel

3. Imagine the following system, which takes one input signal and returns two output signals:

The system 1s tested with various inputs and returns the following outputs:

Input Output
f(t) = cos(wt) hy(t) = A cos(wt), h2(t) = B sin(wt)
f(t) = sin(wt) hy(t) = Asin(wt), h>(t) = —B cos(wt)

where A and B are real constants, and e 1s any real frequency.

Given the information above. derive a possible system transfer function G (w). and the related
impulse response function g(t). Show that this is a linear time-invariant system.

Note: cos(wt — m/2) = sin(wt) and sin(wt — 7/2) = — cos(wt)

ANSWER
possible system transfer function:

Output signals:

y; = AX

y, = Bcos(a)t - Zj = Bx(a)t - zj
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Fourier transform of output signals
Y, (@)= AX ()
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Y,(w)=Be 2X(w)

Transfer function
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Impulse response function as inverse Fourier transform of transfer function
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This is a a linear time-invariant system due to for unit sample signal we have unit sample
response.

Let see that this is a linear time-invariant system for various inputs and corresponds outputs:
For the first input and output:

Input

X(t) = cos(at) = —sin(wt — 7/2) - input is a sinusoidal signal

Output

y,(t)= Acos(at)= —Asin(at — 7/2) - is a sinusoidal signal

Y, (t) = Bsin(a)t) - is a sinusoidal signal

For the second pair

Input



X(t) = Sin(a)t) - input is a sinusoidal signal
Output
yl(t): Asin(a)t) - is a sinusoidal signal

Y, (t) = —BCOS(a)t) = BSin(a)t — 7r/2) - is a sinusoidal signal



