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1D Fourier transform is defined as 
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and in 2D case it can be defined as 
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We can write given function from Eq. (1) as 

 ( ) ( ) ( ),f x y g x h y=  (4) 

It follows using Eq. (3) 
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In region − to / 2X− and / 2X  to  , function ( ) 0g x = and first and third integral will be zero. 

Similarly for ( )h y . We have 
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We have obtained 2D Fourier transform of rect function given in Eq. (1). It can be also written in terms 

of sinc function which is defined as 
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We have 
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PROBLEM 2 

 

 

ANSWER 

a. 

Sampling the signal ( )f t  involves multiplying that signal with the impulse train (also knows as comb or 

shah) function which is defined as 
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Sampled signal will be thus 
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Because comb function is periodic, we can find its Fourier series representation 
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Coefficients nc are found as 
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where we used the fact that function ( )t n t −  is zero in interval ,
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, it follows that Fourier transform of comb function is 
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Multiplication in time domain is equal to convolution in frequency domain. That means when taking 

Fourier transform of sampled function we will have convolution of them. It follows 
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where shifting property of delta function was used when finding convolution of two functions.  

The final expression Eq. (14) shows that Fourier transform of the sampled function is a periodic function 

consisting of the repeated copies of the transform of the original continuous-time signal. 

b. 

We have that discrete Fourier transform (DFT) is 
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and inverse DFT 
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In our case we have that 
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= . Now, if we add M zero points at the end of our signal, we get 
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The sum doesn’t change because extra zeroes don’t contribute to it. Now, we have M + spectral 

samples with the same Nyquist frequency but with different line spacing. Taking the inverse DFT, we get 
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The term 
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 can be solved analytically which leads to sinc function (aliased sinc function, 

https://en.wikipedia.org/wiki/Dirichlet_kernel). 

c. 

Zero padding means added extra zeros onto the end of tf  before performing the DFT. Because the zero-

padded signal is longer the resulting DFT provides better frequency resolution. Zero-padding in the time-

domain results in interpolation in the frequency-domain. 
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possible system transfer function: 

Output signals: 

 

 

Fourier transform of output signals 
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Impulse response function as inverse Fourier transform of transfer function 

 

This is a a linear time-invariant system due to for unit sample signal we have unit sample 

response. 

 

Let see that this is a linear time-invariant system for various inputs and corresponds outputs: 

For the first input and output: 

Input 
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 - is a sinusoidal signal 
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