timeforchg
Sep 13, 2012, 07:36 PM
I am trying to find the z0 to z6 roots of this equation but I am stuck here. Anyone care to show the step by step on how to procced?
z^{6}-1 = \left [\frac{64j(1-j)}{1+2j} \right ]^{6}
\\\
\\\
z^{6}-1 = \left [\frac{64j-64j^{2}}{1+2j} \right ]^{6}
\\\
\\\
z^{6}-1 = \left [\frac{64+64j}{1+2j} \right ]^{6}
\\\
\\\
z^{6}-1 = \left [\frac{192}{5} -\frac{64j}{5} \right ]^{6}
z^{6}-1 = \left [\frac{64j(1-j)}{1+2j} \right ]^{6}
\\\
\\\
z^{6}-1 = \left [\frac{64j-64j^{2}}{1+2j} \right ]^{6}
\\\
\\\
z^{6}-1 = \left [\frac{64+64j}{1+2j} \right ]^{6}
\\\
\\\
z^{6}-1 = \left [\frac{192}{5} -\frac{64j}{5} \right ]^{6}