tikki14
Apr 21, 2011, 04:48 AM
I meet some problems in solving some equations. I tried a lot of methods, but I didn't get any solution, so I'd be grateful if you could give some ideas.
1) \sin^3 x + \cos^3 x = \cos 2x, for -90 \circ < x < 90 \circ
At first, I tried to write
\sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x + \cos^2 x - \sin x \cos x)
= (\sin x + \cos x)(1- \sin x \cos x)
but I don't know how to solve next.
Then, I wrote \cos 2x = \cos^ x - \sin^2 x \Rightarrow \sin^3 x + \cos^3 x - \cos^2 x + \sin^2 x= 0
If \cos x = 0 \Rightarrow \sin^3 x + \sin^2 x = 0 --> \sin^2 x (\sin x + 1) = 0
\sin^2 x = 0 \Rightarrow x = \arctsin 0 + k \pi = k \pi, k \epsilon Z
sin x + 1 = 0 \Rightarrow x = (-1)^(k+1) arcsin 1 + k \pi = (-1)^(k+1) \frac{\pi}{2} + k \pi, k \epsilon Z
If \cos x \neq 0 \Rightarrow \frac{\sin^3 x}{\cos^3 x} + \frac{\cos^3 }{\cos^3 x} - \frac{\cos^2 x}{\cos^3 x} + \frac{\sin^2 x}{\cos^3 x} = 0 \Rightarrow \tan^3 x + 1 - \frac{1}{\cos x} + \tan^2 \frac{1}{cos x} = 0 \Rightarrow \tan^3 x + 1 - \frac{1}{cos x} (\tan^2 x - 1) = 0 \Rightarrow (\tan x + 1)(\tan^2 x - \tan x + 1) - \frac{1}{\cos x} (\tan x -1)(\tan x + 1) = 0 \Rightarrow (\tan x +1)[\tan^2 x - \tan x +1 - \frac{1}{\cos x}(\tan x -1)] = 0 \Rightarrow (\tan x +1)[\tan x (\tan x -1) + 1 - \frac{1}{\cos x}(\tan x - 1)] = 0 \Rightarrow (\tan x +1)[(\tan x -1)(\tan x - \frac{1}{\cos x})+1] =0 \Rightarrow (\tan^2 -1)(\tan x - \frac{1}{\cos x} + \tan x + 1) = 0 \Rightarrow (\tan^x -1)(2 \tan x - frac{1}{\cos x} + 1) = 0[/math]
\tan^2 x -1 = 0 \Rightarrow \tan x = \pm 1
\tan x = 1 \Rightarrow x= \frac{\pi}{4} + k \pi, k \in Z
\tan x = -1 \Rightarrow x = - \frac{\pi}{4} + k \pi, k \in Z
2 \tan x - \frac{1}{\cos x} + 1 = 0 \Rightarrow 2 \tan x + 1 = \frac{1}{sqrt(1 + \tan^2 x)} \Rightarrow (2 \tan x + 1)^2 = \frac{1}{1 + \tan^2 x} \Rightarrow (1 + \tan^2 x)(2 \tan x +1)^2 = 1
Is this correct? If it is, how to solve next?
2) \cot x - \tan x + 2 (\frac{1}{\tan x + 1} + \frac{1}{\tan x -1}) = 4
\frac{1}{\tan x} - \tan x + 2 \frac{\tan x -1 + \tan x + 1}{\tan^2 - 1} = 4
\frac{1 - \tan^2 x}{\tan x} + \frac{4 \tan x}{\tan^2 x -1} = 4
-(\tan^2 x -1)^2 + 4 \tan^2 x - 4 \tan x (\tan^2 x -1) = 0
What to do now to get the solution?
Thank you for taking time to read this.
1) \sin^3 x + \cos^3 x = \cos 2x, for -90 \circ < x < 90 \circ
At first, I tried to write
\sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x + \cos^2 x - \sin x \cos x)
= (\sin x + \cos x)(1- \sin x \cos x)
but I don't know how to solve next.
Then, I wrote \cos 2x = \cos^ x - \sin^2 x \Rightarrow \sin^3 x + \cos^3 x - \cos^2 x + \sin^2 x= 0
If \cos x = 0 \Rightarrow \sin^3 x + \sin^2 x = 0 --> \sin^2 x (\sin x + 1) = 0
\sin^2 x = 0 \Rightarrow x = \arctsin 0 + k \pi = k \pi, k \epsilon Z
sin x + 1 = 0 \Rightarrow x = (-1)^(k+1) arcsin 1 + k \pi = (-1)^(k+1) \frac{\pi}{2} + k \pi, k \epsilon Z
If \cos x \neq 0 \Rightarrow \frac{\sin^3 x}{\cos^3 x} + \frac{\cos^3 }{\cos^3 x} - \frac{\cos^2 x}{\cos^3 x} + \frac{\sin^2 x}{\cos^3 x} = 0 \Rightarrow \tan^3 x + 1 - \frac{1}{\cos x} + \tan^2 \frac{1}{cos x} = 0 \Rightarrow \tan^3 x + 1 - \frac{1}{cos x} (\tan^2 x - 1) = 0 \Rightarrow (\tan x + 1)(\tan^2 x - \tan x + 1) - \frac{1}{\cos x} (\tan x -1)(\tan x + 1) = 0 \Rightarrow (\tan x +1)[\tan^2 x - \tan x +1 - \frac{1}{\cos x}(\tan x -1)] = 0 \Rightarrow (\tan x +1)[\tan x (\tan x -1) + 1 - \frac{1}{\cos x}(\tan x - 1)] = 0 \Rightarrow (\tan x +1)[(\tan x -1)(\tan x - \frac{1}{\cos x})+1] =0 \Rightarrow (\tan^2 -1)(\tan x - \frac{1}{\cos x} + \tan x + 1) = 0 \Rightarrow (\tan^x -1)(2 \tan x - frac{1}{\cos x} + 1) = 0[/math]
\tan^2 x -1 = 0 \Rightarrow \tan x = \pm 1
\tan x = 1 \Rightarrow x= \frac{\pi}{4} + k \pi, k \in Z
\tan x = -1 \Rightarrow x = - \frac{\pi}{4} + k \pi, k \in Z
2 \tan x - \frac{1}{\cos x} + 1 = 0 \Rightarrow 2 \tan x + 1 = \frac{1}{sqrt(1 + \tan^2 x)} \Rightarrow (2 \tan x + 1)^2 = \frac{1}{1 + \tan^2 x} \Rightarrow (1 + \tan^2 x)(2 \tan x +1)^2 = 1
Is this correct? If it is, how to solve next?
2) \cot x - \tan x + 2 (\frac{1}{\tan x + 1} + \frac{1}{\tan x -1}) = 4
\frac{1}{\tan x} - \tan x + 2 \frac{\tan x -1 + \tan x + 1}{\tan^2 - 1} = 4
\frac{1 - \tan^2 x}{\tan x} + \frac{4 \tan x}{\tan^2 x -1} = 4
-(\tan^2 x -1)^2 + 4 \tan^2 x - 4 \tan x (\tan^2 x -1) = 0
What to do now to get the solution?
Thank you for taking time to read this.