krdiggs
Jul 27, 2010, 12:59 PM
Can you help answer how this problem is solved?Express in a + bi form... (2 - 2i) ^5 ?
The answer is -128 + 128i... but how?
ebaines
Jul 27, 2010, 01:32 PM
Two ways to do this:
1) Brute foirce, using a polynomial expansion:
(a-b)^5 = a^5 - 5a^4b + 10a^3b^2 - 10 a^2b^3 +5ab^4 - b^5
Apply this to (2-2i), and you get
(2-2i)^5 = 2^5(1-i)^5 = 32(1-5i+10i^2-10i^3+5i^4-i^5) = 32(1-5i-10+10i+5 -i) = 32(-4+4i) =-128+128i
2) Use D'Moivre's theorem:
(R \cdot cis(\theta))^n = R^n cis(n \theta)
where
cis(\theta) = \cos(\theta) + i \sin(\theta)
Convert 2-2i to polar cordinates for the cis form: (2-2i) is radius 2 \sqrt 2 and angle \theta = -\pi/4
(2-2i)^5 = (2 \sqrt 2)^5 cis(- \frac 5 4 \pi) = 2^{15/2}cis( \frac 3 4 \pi)
Finally, convert back to rectangular coordinates:
-2^7 + 2^7 i = -128 + 128i