PDA

View Full Version : I need help on a Calculus problem


namandrew
Apr 9, 2010, 03:14 AM
a cup of coffee at 95 degrees Celsius is put into a 25 degree Celsius room when t=0. The coffee's temperature,f(t), is changing at a rate given by f'(t)=-5(0.6)^t degrees Celsius per minute, where t is in minutes. Estimate the coffee's temperature when t=10.

Curlyben
Apr 9, 2010, 04:07 AM
Thank you for taking the time to copy your homework to AMHD.
Please refer to this announcement: https://www.askmehelpdesk.com/finance-accounting/announcement-font-color-ff0000-u-b-read-first-expectations-homework-help-board-b-u-font.html

galactus
Apr 9, 2010, 11:03 AM
Here is one way to go about it.

Newton's Cooling Law says that, in this case:

\frac{dT}{dt}=k(T-25)

\frac{dT}{T-25}=kdt

Integrate and get:

ln(T-25)=kt+C

But, at t=0, the coffee is T=95.

Therefore, subbing in T=95 and t=0, we find that C=ln(70).

But, we are also told that

k=-5(\frac{3}{5})^{t}

So, we have:

ln(\frac{T-25}{70})=-5t(\frac{3}{5})^{t}

Sub in t=10 and solve for T to find the coffee temp. at t=10.