View Full Version : Trig identities
blondetrig
Nov 15, 2009, 09:15 AM
I need to prove the following
sinxcot(x/2)=cosx+1
I'm usually OK in math but have a huge trig block... help!
Nhatkiem
Nov 15, 2009, 12:58 PM
Please put parenthesis where needed. Is that cos(x) or cos (x+1), is that sin(x)cot(x/2) or sin(cot(x/2))?
Unknown008
Nov 16, 2009, 12:06 AM
Well, what I would have done is:
1. Convert all into half angle, in terms of cos and sin only:
sinxcot(\frac{x}{2}) = 2sin (\frac{x}{2}) cos (\frac{x}{2}) \frac{cos(\frac{x}{2})}{sin(\frac{x}{2})}
Then, cross out the ones which cancel:
2\cancel{sin (\frac{x}{2})} cos (\frac{x}{2}) \frac{cos(\frac{x}{2})}{\cancel{sin(\frac{x}{2})}} = 2cos^2(\frac{x}{2})
Then, transform back to single angle using the identity:
cos2A = 2cos^2 A -1
This should lead you to the answer.
I hope it helped! :)
tiarav001
Nov 19, 2009, 08:00 PM
how to solve 1+cot^2x/cscx=1/sinx
Unknown008
Nov 19, 2009, 08:09 PM
What is 1+cot^2x? That is the equivalent of cosec^2x
You have cosec^2x and cosecx which reduce to cosecx. What is the definition of cosec? That will give you the answer.