leonardo1841
Nov 14, 2009, 10:34 AM
Make x the subject
((Ax2)/b) + x = d
Unknown008
Nov 14, 2009, 09:54 PM
\frac{ax^2}{b} + x = d
Multiply everything by b to remove fractions;
\frac{ax^2}{\cancel{b}} \cancel{b} + bx = bd
Now factorise a
a(x^2+ \frac{b}{a}x) = bd
Divide by a:
\frac{\cancel{a}(x^2+ \frac{b}{a}x)}{\cancel{a}} = \frac{bd}{a}
Complete the square:
(x^2+ \frac{b}{a}x) = \frac{bd}{a}
(x+ \frac{b}{2a})^2 - \frac{b^2}{4a^2} = \frac{bd}{a}
Add the b^2/4a^2 to both sides;
(x+ \frac{b}{2a})^2 \cancel{- \frac{b^2}{4a^2} +\frac{b^2}{4a^2}} = \frac{bd}{a} + \frac{b^2}{4a^2}
Take square root:
(x+ \frac{b}{2a})= \pm \sqrt{\frac{bd}{a} + \frac{b^2}{4a^2}}
Subtract b/2a;
x+ \cancel{\frac{b}{2a} -\frac{b}{2a}} = \pm \sqrt{\frac{bd}{a} + \frac{b^2}{4a^2}} - \frac{b}{2a}
x = \pm \sqrt{\frac{bd}{a} + \frac{b^2}{4a^2}} - \frac{b}{2a}
Of course, there is a shortcut, but I want to show how you do without a formula.