View Full Version : Complex no.s in cartesian form
Vi Nguyen
Jul 3, 2009, 04:35 AM
Express in cartesian form a+ib, with a,b as real numbers:
1/(1+cosβ+isinβ)
Thanks ;p
galactus
Jul 3, 2009, 08:01 AM
I assume you mean like this:
\frac{1}{2}-\frac{tan(\frac{\beta}{2})i}{2}
Vi Nguyen
Jul 5, 2009, 04:52 AM
No, apparently the answer is .5(1-i(sinbeta/1+cosbeta).
I assume you mean like this:
\frac{1}{2}-\frac{tan(\frac{\beta}{2})i}{2}
galactus
Jul 5, 2009, 05:57 AM
That's the same thing. Know your trig identities?
tan(\frac{x}{2})=\frac{sin(x)}{1+cos(x)}=\frac{1-cos(x)}{sin(x)}