View Full Version : Solve 1/2log[base64] - log[basex]=log 6
BigTreeWoody
Jun 3, 2009, 07:22 PM
1/2log[base64] - log[basex]=log6
1/2log[base64] - log[basex]=log4
Perito
Jun 3, 2009, 07:34 PM
\frac 12 log_{64}(?) - log_x(?)=log_{10}(6)
\frac 12 log_{64}(?) - log_x(?)=log_{10}(4)
I think you're missing something in your equations. At least you are if I understood what you wrote.
BigTreeWoody
Jun 3, 2009, 07:37 PM
Woops! 64 and x are not bases 1/2log64-logx=log 6
1/2log64-logx=log4
Perito
Jun 3, 2009, 07:42 PM
Woops! 64 and x are not bases 1/2log64-logx=log 6
1/2log64-logx=log4
\frac 12 log(64) - log(x)=log(6)
\frac 12 log(64) - log(x)=log(4)
1. Recognize that a\,log(b)=log(b^a).
2. Recognize that \Large a^{\frac 12} = \sqrt{a\,}
3. Isolate the log(x) term on one side of the equation.
4. Take the antilog antilog(log(x))=10^{log(x)}=x and solve for x.