hibz 660
Nov 9, 2008, 10:28 AM
Evaluate the following limit:-
xlnx
where (x approuch to 0)
I tried to answer this question by l'hopital rule and got 1 as the answer... is it correct? please need to know if I solved it correctly or not :confused:and how to solve it by l'hopital rule.. thx:D
galactus
Nov 9, 2008, 01:40 PM
To be formal, we can use the Squeeze theorem.
Recall the definition \int_{1}^{x}\frac{dy}{y}=ln(x)
For y\geq 1 we get y\geq \sqrt{y}
\Rightarrow \frac{1}{y}\leq \frac{1}{\sqrt{y}}
\Rightarrow \int_{1}^{x}\frac{1}{y}dy\leq
\int_{1}^{x}\frac{1}{\sqrt{y}}dy.
As \int_{1}^{t}\frac{1}{\sqrt{y}}dy=2\sqrt{y}|_{1}^{x }=2\sqrt{x}-2
We get ln(x)=\int_{1}^{x}\frac{1}{y}dy\leq 2\sqrt{x}-2
Now, the Squeeze theorem:
For x\geq 1, 0\leq \frac{ln(x)}{x}\leq \frac{2\sqrt{x}-2}{x}
0\leq \frac{ln(x)}{x}\leq 2\left(\frac{1}{\sqrt{x}}-\frac{1}{x}\right)
As 2\left(\frac{1}{\sqrt{x}}-\frac{1}{x}\right)\rightarrow_{x\to \infty}0
we get \frac{ln(x)}{x}\rightarrow_{x\to \infty} 0
Now, let w=\frac{1}{x}:
\lim_{x\to \infty}\frac{ln(x)}{x}-\lim_{w\to 0^{+}}\frac{ln(\frac{1}
{w})}{\frac{1}{w}}=\lim_{w\to 0^{+}} -wln(w)
Since \frac{ln(x)}{x}\rightarrow_{x\to {\infty}}0 we get
\fbox{\lim_{w\to 0^{+}}wln(w)=0}