Calculus Student
Dec 14, 2007, 01:50 AM
Usually I am pretty good at these, but this one is killing me. Please help!
Never mind I solved it. Here's the answer if anyone is curious.
\Large\frac{sin^2\theta-tan\theta}{cos^2\theta-cot\theta}=tan^2\theta
\LARGE\frac{sin^2\theta-\frac{sin\theta}{cos\theta}}{cos^2\theta-\frac{cos\theta}{sin\theta}}
\LARGE\frac{\frac{sin^2\theta cos\theta-sin\theta}{cos\theta}}{\frac{cos^2\theta sin\theta-cos\theta}{sin\theta}}
\LARGE\frac{\frac{sin\theta(sin\theta cos\theta-1)}{cos\theta}}{\frac{cos\theta(sin\theta cos\theta-1)}{sin\theta}}
\Large(\frac{sin\theta(sin\theta cos\theta-1)}{cos\theta}) X (\frac{sin\theta}{cos\theta(sin\theta cos\theta-1)})
\Large\frac{(sin\theta)(sin\theta)(sin\theta cos\theta-1)}{(cos\theta)(cos\theta)(sin\theta cos\theta-1)}
\Large\frac{(sin\theta)(sin\theta)\cancel{(sin\the ta cos\theta-1)}}{(cos\theta)(cos\theta)\cancel{(sin\theta cos\theta-1)}}
\Large\frac{sin^2\theta}{cos^2\theta}
\Large\frac{sin^2\theta}{cos^2\theta}=tan^2\theta
Never mind I solved it. Here's the answer if anyone is curious.
\Large\frac{sin^2\theta-tan\theta}{cos^2\theta-cot\theta}=tan^2\theta
\LARGE\frac{sin^2\theta-\frac{sin\theta}{cos\theta}}{cos^2\theta-\frac{cos\theta}{sin\theta}}
\LARGE\frac{\frac{sin^2\theta cos\theta-sin\theta}{cos\theta}}{\frac{cos^2\theta sin\theta-cos\theta}{sin\theta}}
\LARGE\frac{\frac{sin\theta(sin\theta cos\theta-1)}{cos\theta}}{\frac{cos\theta(sin\theta cos\theta-1)}{sin\theta}}
\Large(\frac{sin\theta(sin\theta cos\theta-1)}{cos\theta}) X (\frac{sin\theta}{cos\theta(sin\theta cos\theta-1)})
\Large\frac{(sin\theta)(sin\theta)(sin\theta cos\theta-1)}{(cos\theta)(cos\theta)(sin\theta cos\theta-1)}
\Large\frac{(sin\theta)(sin\theta)\cancel{(sin\the ta cos\theta-1)}}{(cos\theta)(cos\theta)\cancel{(sin\theta cos\theta-1)}}
\Large\frac{sin^2\theta}{cos^2\theta}
\Large\frac{sin^2\theta}{cos^2\theta}=tan^2\theta