physic
May 30, 2012, 09:17 AM
this is simple of wave function:
\Psi{(\vec r, t)}=Ae^{i(\phi+\vec k .\vec r - \omega t)}
\Psi{(\vec r, t)}=A|\cos{(\phi+\vec k .\vec r - \omega t)}+i\sin{(\phi+\vec k .\vec r - \omega t)}|
i want to know
why wave function\Psi{(\vec r, t)} shown with \vec randt?
what is A Amplitude?
what is phase angle (\phi+\vec k .\vec r - \omega t)?
and what means cos and sin of it \cos{(\phi+\vec k .\vec r - \omega t)}?
\Psi{(\vec r, t)}=Ae^{i(\phi+\vec k .\vec r - \omega t)}
\Psi{(\vec r, t)}=A|\cos{(\phi+\vec k .\vec r - \omega t)}+i\sin{(\phi+\vec k .\vec r - \omega t)}|
i want to know
why wave function\Psi{(\vec r, t)} shown with \vec randt?
what is A Amplitude?
what is phase angle (\phi+\vec k .\vec r - \omega t)?
and what means cos and sin of it \cos{(\phi+\vec k .\vec r - \omega t)}?