lato1
Dec 6, 2011, 10:24 PM
I have 3 very tricky limits questions
 
 
1 lim (x sin(x^2   e^x))/(x^2   1) as x approaches infinity.
 
2 lim(1/(e^x sin(1/x^2)) as x approaches infinity
 
3 lim(x-x^1/2 lnx) as x approaches infinity
Aurora2000
Dec 7, 2011, 03:03 AM
You can try use de l'Hopital rule when dealing with limits of form \frac{0}{0}, \frac{\infty}{\infty}:
 
1. \lim_{x\rightarrow \infty} \frac{x\sin(x^2 e^x)}{x^2+1} 
Notice that |\sin(x^2 e^x)|\leq 1 , thus
\lim_{x\rightarrow \infty} \frac{|x\sin(x^2 e^x)|}{x^2+1}
\leq \lim_{x\rightarrow \infty} \frac{|x|}{x^2+1}=0 
thus
\lim_{x\rightarrow \infty} \frac{x\sin(x^2 e^x)}{x^2+1}=0 
 
2. \lim_{x\rightarrow \infty} \frac{1}{e^x\sin(1/x^2)}
This is more tricky, you have to see who wins between e^x  (who goes to infinity) and 
\sin(1/x^2)  (who goes to 0). Using 
\lim_{y\rightarrow 0}\frac{\sin y}{y}=1 
you can have
\lim_{x\rightarrow \infty}\frac{\sin (1/x^2)}{1/x^2}=1 
thus
\lim_{x\rightarrow \infty} \frac{1}{e^x\sin(1/x^2)}=
\lim_{x\rightarrow \infty} \frac{1}{e^x\sin(1/x^2)}\frac{\sin(1/x^2)}{1/x^2}= 
\lim_{x\rightarrow \infty} \frac{x^2}{e^x}=0
 
3. lim(x-x^1/2 lnx) as x approaches infinity
It does not display correctly (maybe a plus sign is missing), but both
 \lim_{x\rightarrow \infty} x-x^{1/2}+\log x
and 
 \lim_{x\rightarrow \infty} x-x^{1/2}\log x
converge to infinity.
You can verify this by using 
 \lim_{x\rightarrow \infty} x-x^{1/2}+\log x \geq 
\lim_{x\rightarrow \infty} \frac{x-x^{1/2}+\log x}{x^{3/4}}=\infty
or similarly
 \lim_{x\rightarrow \infty} x-x^{1/2}\log x\geq
\lim_{x\rightarrow \infty} \frac{x-x^{1/2}\log x}{x^{3/4}}=\infty