endlesslove230
Oct 17, 2011, 07:15 AM
An object performs a harmonic motion. If the values of the deflections are x1=2 [cm], x2=3 [cm] and the velocities are v1=5 [m/s], v2=4 [m/s], calculate the amplitude and the angular frequency of the harmonic oscillator.
Here is what I solved so far:
x_1=A_1 cos \omega t_1
x_2=A_2 cos \omega t_2
v_1=\omega A_1 cos \omega t_1 = \omega x_1
v_2=\omega A_2 cos \omega t_2 = \omega x_2
What should I do next to reach:
A = sqrt(\frac{(x_2)^2 (v_1)^2 - (v_2)^2 (x_1)^2}{(v_1)^2 - (v_2)^2})
\omega = sqrt(\frac{(v_1)^2 - (v2)^2}{(x_2)^2 -(x1)^2}) ?
Here is what I solved so far:
x_1=A_1 cos \omega t_1
x_2=A_2 cos \omega t_2
v_1=\omega A_1 cos \omega t_1 = \omega x_1
v_2=\omega A_2 cos \omega t_2 = \omega x_2
What should I do next to reach:
A = sqrt(\frac{(x_2)^2 (v_1)^2 - (v_2)^2 (x_1)^2}{(v_1)^2 - (v_2)^2})
\omega = sqrt(\frac{(v_1)^2 - (v2)^2}{(x_2)^2 -(x1)^2}) ?