kpg0001
Oct 11, 2010, 12:33 PM
The sum of the sides of a triangle squared equals ten. (a^2+b^2+c^2=10). Using lagrange multipliers find the minimum perimeter of the triangle.
galactus
Oct 11, 2010, 01:05 PM
We want to minimize
f(a,b,c)=a+b+c
subject to the constraint:
a^{2}+b^{2}+c^{2}=10
Thus, with g(a,b,c)=a^{2}+b^{2}+c^{2}, we have:
{\nabla}f(a,b,c)={\lambda}{\nabla}g(a,b,c)
i+j+k={\lambda}(2ai+2bj+2ck)
Equating like terms leads us to:
1=2a{\lambda}
1=2b{\lambda}
1=2c{\lambda}
So, \frac{1}{2a}={\lambda}
\frac{1}{2b}={\lambda}
\frac{1}{2c}={\lambda}
\frac{1}{2a}=\frac{1}{2b}=\frac{1}{2c}
a=b=c
sub this into the constraint and we get:
3a^{2}=10
a=b=c=\sqrt{\frac{10}{3}}
The minimum perimeter is
3\cdot \sqrt{\frac{10}{3}}=\sqrt{30}\approx 5.48