shahmeerbhp
Feb 17, 2010, 05:33 AM
find the angle of intersection of the cardioid r=a (1+cos θ ) and r=b (1-cos θ)
galactus
Feb 17, 2010, 12:21 PM
a(1+cos{\theta})=b(1-cos{\theta})
{\theta}=\frac{(4C-1){\pi}}{2}-sin^{-1}(\frac{a-b}{a+b}) \;\ or \;\ sin^{-1}(\frac{a-b}{a+b})+\frac{(4C+1){\pi}}{2}
\frac{a-b}{a+b}\leq 1, \;\ \frac{a-b}{a+b}\geq -1
Let C=an integer and the angle theta depends on the values of a and b.
Try some arbitrary a and b values and check.